Efficacy of Chiropractic Care on Cervical Herniated Discs

When studying chiropractic care in relationship to herniated discs and degeneration, we must first look carefully at each component to ensure that we are consistent with language to ensure a better understanding. There have been many reports in the literature on chiropractic care and its efficacy. However, the reporting is often “muddled” based upon interchangeable terminology utilized to describe what we do. The etiology of the verbiage being used has apparently been part of a movement to gain acceptance within the healthcare community, but this attempt for a change in view by the healthcare community has cost us.

Currently, the scientific community has lumped together manipulation performed by physical therapists or osteopaths with chiropractic spinal adjustments because all three professions perform “hands on” manual therapy to the spine. For example, Martínez-Segura, De-la-LLave-Rincón, Ortega-Santiago, Cleland, and Fernández-de-Las-Peñas (2012) discussed how physical therapists commonly use manual therapy interventions directed at the cervical or thoracic spine, and the effectiveness of cervical and thoracic spine thrust manipulation for the management of patients with mechanical, insidious neck pain. Herein lies the root of the confusion when “manipulation” is utilized as a “one-size-fits-all” category of treatment as different professions has different training and procedures to deliver the manipulation, usually applying different treatment methods and realizing different results and goals.

In addition, as discussed by Sung, Kang, and Pickar (2004), the terms “mobilization,” “manipulation” and “adjustment” also are used interchangeably when describing manual therapy to the spine. Some manipulation and virtually all chiropractic adjusting “…involves a high velocity thrust of small amplitude performed at the limit of available movement. However, mobilization involves repetitive passive movement of varying amplitudes at low velocity” (Sung, Kang, & Picker, 2004, p. 115).

To offset confusion between chiropractic and any other profession that involves the performance of some type of manipulation, for the purpose of clarity, we will be referring to any type of spinal therapy performed by a chiropractor as a chiropractic spinal adjustment (CSA) and reserve manipulation for other professions who have not been trained in the delivery of CSA. Until now, the literature has not directly supported the mechanism of the CSA. However, it has supported each component and the supporting literature, herein, will define the neuro-biomechanical process of the CSA and resultant changes.

HERNIATED DISCS

When considering disc issues, Fardone et. Al (2014) defined the nomenclature that has been widely accepted both in academia and clinically and should be adhered to, to ensure that reporting and visualizing pathology is consistent with the morphology visualized. In the past, this has been a significant issue as many have called a bulge a protrusion, a prolapse or herniation. In today’s literature Fardone’s document has resolved much of those problems.

Herniated Disc: “Herniated disc is the best general term to denote displacement of disc material. The term is appropriate to denote the general diagnostic category when referring to a specific disc and to be inclusive of various types of displacements when speaking of groups of discs. The term includes discs that may properly be characterized by more specific terms, such as ‘‘protruded disc’’ or ‘‘extruded disc.’’ The term ‘‘herniated disc,’’ as defined in this work, refers to localized displacement of nucleus, cartilage, fragmented apophyseal bone, or fragmented annular tissue beyond the intervertebral disc space. ‘‘Localized’’ is defined as less than 25% of the disc circumference. The disc space is defined, craniad and caudad, by the vertebral body end plates and, peripherally, by the edges of the vertebral ring apophyses, exclusive of the osteophyte formation. This definition was deemed more practical, especially for the interpretation of imaging studies, than a pathologic definition requiring identification of disc material forced out of normal position through an annular defect.” (page E1454)

 

SPINAL DEGENERATION

Spinal degenerating is typically associated with vertebral body endplate changes, or degeneration of the bones of the spine and it starts at the edges. These changes were classified by Michael Modic MD, Neuroradiologist in 1988 and were classified into 3 categories:

Viroslav (2016) reported:

On histopathologic section, type 1 changes are associated with fissuring of the endplates and infiltration of vascularized fibrous tissue. Increased osteoclasts, osteoblasts, and reactive woven bone are also found, indicating that type 1 changes are due to an inflammatory-type response. Type 2 changes occur due to conversion of red marrow to fatty marrow, and type 3 changes represent subchondral sclerosis…. later studies have shown that endplate changes can fluctuate between types, and some changes can regress completely. Mixed Modic endplate changes are commonly seen, and support the contention that all of the changes are manifestations of the same process at different stages. Modic changes can also regress following lumbar fusion. (http://radsource.us/vertebral-endplate-changes/)

In short, Modic changes are stages reflective of the process the vertebrate undergoes in degeneration. First there is inflammation, then the marrow changes to fat preventing nutrients to feed the bone, followed by sclerotic or degeneration of bone. In the context of this article, how are spinal herniations responding to chiropractic care in lieu of inherent degenerative changes.

 

CHIROPRACTIC CARE
Kressig et. Al (2016) reported:

Although patients who were Modic positive had higher baseline NDI (Neck Disability Index) scores, the proportion of these patients improved was higher for all time points up to 6 months. Pg. 565

The results of the present study on patients with CDH (Cervical Disc Herniation), which indicate better treatment outcomes for patients with CDH with MCs (Modic Changes), are generally consistent with those reported for patients with LDH (lumbar disc herniation), other than the fact that the patients with CDH and MC reported no relapses…It is also important to mention that none of the patients in the present study reported worsening of their condition. Cervical HVLA manipulation (chiropractic spinal adjustment) has been controversial, with suggestions that it can lead to vertebral artery dissection and stroke. However, in 2007, a prospective national survey by Thiel et al studied almost 20 000 patients who were treated with cervical HVLA manipulation or mechanically assisted thrust. There were no reports of serious adverse events, which were defined as symptoms with immediate onset after treatment and with persistent or significant disability. Pg. 572

CONCLUSION

This report on the literature verifies that chiropractic care renders significant improvement in patients with cervical disc herniation in the presence of inflammation and/or degenerative changes using an accepted disability index in a verifiable scenario. This, in conjunction with other numerous report on the efficacy of chiropractic successfully treating patients with herniated discs offers solutions to an injured public.

References:

  1. Kressig, M., Peterson, C. K., McChurch, K., Schmid, C., Leemann, S., Anklin, B., & Humphreys, B. K. (2016). Relationship of Modic Changes, Disk Herniation Morphology, and Axial Location to Outcomes in Symptomatic Cervical Disk Herniation Patients Treated With High-Velocity, Low-Amplitude Spinal Manipulation: A Prospective Study.Journal of manipulative and physiological therapeutics,39(8), 565-575.
  2. Martínez-Segura, R., De-la-LLave-Rincón, A. I., Ortega-Santiago, R., Cleland J. A., Fernández-de-Las-Peñas, C. (2012). Immediate changes in widespread pressure pain sensitivity, neck pain, and cervical range of motion after cervical or thoracic thrust manipulation in patients with bilateral chronic mechanical neck pain: A randomized clinical trial. Journal of Orthopedics & Sports Physical Therapy, 42(9), 806-814.
  1. Sung, P. S., Kang, Y. M., & Pickar, J. G. (2004). Effect of spinal manipulation duration on low threshold mechanoreceptors in lumbar paraspinal muscles: A preliminary report. Spine, 30(1), 115-122.
  2. Viroslav A. (2016) Vertebral Endplate Changes, Retrieved from: http://radsource.us/vertebral-endplate-changes/
  1. Fardon, D. F., Williams, A. L., Dohring, E. J., Murtagh, F. R., Gabriel Rothman, S. L., & Sze, G. K. (2014). Lumbar disc nomenclature: Version 2.0. Recommendations of the combined task forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology. Spine, 39(24), E1448-E1465.

Written by: Mark Studin DC & William J. Owens DC

Comments are closed.